Classification of IRS LISS-III Images by using Artificial Neural Networks
نویسنده
چکیده
The purpose of this paper is to classify the LISS-III satellite images into different classes as agriculture, urban and water body. Here pixel based classification is used to classify each pixel of the satellite image as belonging to one of those three classes. To perform this classification, a neural network back propagation technique is used. The neural network consists of three layers: Input layer, hidden layer and output layer. During training of a network, the sample inputs are given to the input layer which then propagate the hidden layer and then later to the output layer. Each neuron in hidden layer will receive the inputs from all the neurons
منابع مشابه
تعیین سطح شالیزارهای حاشیه زاینده رود در منطقه اصفهان با دادههای رقومی سنجندههای ماهواره IRS
To detect the rice paddis areas in Isfahan region, the IRS-1D data from PAN, LISS III and WiFS time series were used. Geometric, atmospheric, radiometric and topographic corrections were applied to various images from 2003 to 2004. Necessary preprocessing and various analyses as well as time series composite image analyses were applied and field sampling was done for appropriate times in 2003 a...
متن کاملThe Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image
The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...
متن کاملThe Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image
The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...
متن کاملEvaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)
Soil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil map...
متن کاملتعیین سطح شالیزارهای حاشیه زاینده رود در منطقه اصفهان با دادههای رقومی سنجندههای ماهواره IRS
To detect the rice paddis areas in Isfahan region, the IRS-1D data from PAN, LISS III and WiFS time series were used. Geometric, atmospheric, radiometric and topographic corrections were applied to various images from 2003 to 2004. Necessary preprocessing and various analyses as well as time series composite image analyses were applied and field sampling was done for appropriate times in 2003 a...
متن کامل